Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tuncay Karakurt, ${ }^{\text {a }}$ Muharrem Dincer, ${ }^{\text {a }}$ * Akdemir Nesuhi, ${ }^{\text {b }}$ Cihan Kantar ${ }^{\text {c }}$ and Erbil Ağar ${ }^{\text {b }}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, ${ }^{\text {b }}$ Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey, and ${ }^{\text {c }}$ Karadeniz Teknik University, Rize Arts and Sciences Faculty, Department of Chemistry, Rize, Turkey

Correspondence e-mail: mdincer@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.069$
Data-to-parameter ratio $=10.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4,5-Bis(1-naphthoxy)phthalonitrile

In the title molecule, $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, the dihedral angles between the planes of the two naphthalene moieties and the benzene ring are 84.78 (9) and 76.66 (9) ${ }^{\circ}$. The molecular structure is influenced by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions and the crystal structure is stabilized by $\pi-\pi$ interactions.

Comment

4,5-Bis(1-naphthoxy)phthalonitrile, (I), is a starting material in the synthesis of peripherally tetrasubstituted phthalocyanines (Leznoff \& Lever, 1996). Phthalocyanines have continuously been the subject of research due to their wide applications. The fundamental optical and electronic properties of these materials are explained and their potential in nonlinear optics, optical data storage, electronic sensors, xerography, solar energy conversion, nuclear chemistry, molecular magnetism, electrochromic displays and heterogeneous catalysis are evaluated by McKeown (1998). In view of this importance, the crystal structure determination of (I) was carried out.

(I)

The structure of (I) is shown in Fig. 1. The molecule consists of three planar regions, a benzene ring and two naphthalene ring systems. The triple-bond distances, $\mathrm{N} 1 \equiv \mathrm{C} 6[1.128$ (3) A] and $\mathrm{N} 2 \equiv \mathrm{C} 7$ [1.130 (3) A $]$, agree with the mean values of 1.134 (2) \AA reported by Allen et al. (1987). The $\mathrm{C} 1-\mathrm{O} 1$ [1.379 (2) \AA] and C8-O2 [1.363 (2) A] bond lengths show normal values (Gales et al., 2001). The dihedral angles between the least-squares planes through the naphthalene moieties and the plane of the benzene ring are 84.78 (9) and 76.66 (9) ${ }^{\circ}$.

The molecular structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Table 2). In the crystal structure, the inversion-related naphthalene ring systems are stacked with $C g 2 \cdots C g 3^{\mathrm{i}}, C g 4 \cdots C g 5^{\mathrm{ii}}$ and $C g 5 \cdots C g 5^{\mathrm{ii}}$ distances of 3.626 (2), 3.775 (2) and 3.655 (2) \AA, respectively, indicating $\pi-\pi$ interactions [symmetry codes: (i) $1-x, 2-y,-z$; (ii) $2-x, 2-y$, $1-z$; in Table 2 and above, $C g 1, C g 2, C g 3, C g 4$ and $C g 5$ denote the centroids of aromatic rings $\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 8, \mathrm{C} 9-\mathrm{C} 14$,

Received 1 September 2003
Accepted 6 October 2003
Online 23 October 2003
$\mathrm{C} 13-\mathrm{C} 18, \mathrm{C} 19-\mathrm{C} 24$ and $\mathrm{C} 23-\mathrm{C} 28$, respectively]. The structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2).

Experimental

4,5-Bis(1-naphthoxy)phthalonitrile was synthesized according to the procedures reported by Matlaba \& Nyokong (2002). Single crystals were obtained from DMF at room temperature by slow evaporation.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=412.43$
Triclinic, $P \overline{1}$
$a=9.9667(14) \AA$
$b=10.4946(15) \AA$
$c=11.2637(16) \AA$
$\alpha=116.931(11)^{\circ}$
$\beta=99.441(11)^{\circ}$
$\gamma=93.570(12)^{\circ}$
$V=1023.6(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.338 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5492 \\
& \quad \text { reflections } \\
& \theta=2.1-29.5^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, brown } \\
& 0.80 \times 0.35 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS 2 diffractometer φ scans
Absorption correction: none
13294 measured reflections
3606 independent reflections
1694 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.069$
$S=0.80$
3606 reflections
354 parameters
All H-atom parameters refined

$$
\begin{aligned}
& R_{\text {int }}=0.090 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 12 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.379(2)$	$\mathrm{O} 2-\mathrm{C} 19$	$1.409(2)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.415(2)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.128(3)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.363(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.130(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	$115.68(15)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 1$	$122.4(2)$
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 19$	$118.56(15)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 14$	$114.9(2)$
C2-C1-O1	$119.98(18)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{O} 2$	$119.2(2)$
O1-C1-C8	$119.72(18)$	$\mathrm{C} 24-\mathrm{C} 19-\mathrm{O} 2$	$117.4(2)$
C5-C4-C7	$118.71(19)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C15-H15 MO1	$0.98(2)$	$2.41(2)$	$2.775(3)$	$101(1)$
C25-H25 MO2	$0.88(2)$	$2.48(2)$	$2.815(3)$	$103(2)$
C25-H25 \cdots Cg2	$0.88(2)$	$3.04(2)$	$3.882(3)$	$160(2)$
C26-H26 Cg1 $1^{\text {ii }}$	$0.97(3)$	$3.10(3)$	$3.879(3)$	$138(2)$
C28-H28 \cdots Cg3 $^{\text {ii }}$	$0.90(2)$	$2.90(2)$	$3.793(3)$	$176(2)$

Symmetry codes: (ii) $2-x, 2-y, 1-z$; (iii) $1-x, 2-y, 1-z$.
H atoms were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The $\mathrm{C}-\mathrm{H}$ distances lie in the range 0.88 (2)-1.03 (2) \AA.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-RED (Stoe \& Cie, 2001); program(s)

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomnumbering scheme. Displacement ellipsoids of non-H atoms are shown at the 50% probability level.

Figure 2
A view of the molecular packing down the a axis, showing part of the molecular stacking.
used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gales, L., Sousa, M. E., Pinto, M. M. M., Kijjoa, A. \& Damas, A. M. (2001). Acta Cryst. C57, 1319-1323.
Leznoff, C. C. \& Lever, A. B. P. (1996). Phthalocyanines: Properties and Applications. Vols. 1-4. Weinheim: VCH.

organic papers

Matlaba, P. \& Nyokong, T. (2002). Polyhedron, 21, 2463-2472.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and
Function. Cambridge University Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA and X-RED. Stoe \& Cie, Darmstadt, Germany.

